Hong Zhao, Ph.D.

Associate Professor, Department of Mechanical and Nuclear Engineering

  • Biotech One, Suite 1085, Richmond VA UNITED STATES
hzhao2@vcu.edu

Specializing in solid-liquid interactions, self-assembly of colloidal nano particles, and development of various printing processes

Contact

Media

Industry Expertise

Research
Education/Learning
Mechanical/Industrial Engineering

Areas of Expertise

Additive Manufacturing/3d Printing
Printed functional devices
Transport and self-assembly of colloidal nanoparticles
Surface science and surface engineering

Accomplishments

Xerox Achievement Award

2012

Education

Rutgers, The State University of New Jersey

Ph.D.

Mechanical and Aerospace Engineering

2007

Petroleum University

M.S.

Mechanical Engineering

2001

Petroleum University

B.S.

Mechanical Engineering

1996

Media Appearances

Self‐Assembly of Colloidal Nanoparticles in Printing Processes: Interview with Hong Zhao

Advanced Science News  online

2019-04-12

Zhao’s current research focuses on discovering and understanding new self-assembly mechanisms of colloidal particles.

Zhao pursues the approach of forming well-ordered monolayer structures by assembling colloidal particles at the air–liquid interface, creating a new paradigm in generating coatings and functional devices through inkjet printing.

What drives Zhao to work hard and to strive for excellence in each of the roles that she takes is her sense of responsibility.

View More

Selected Articles

Mask-assisted electrospray for superoleophobic surfaces: An experimental and numerical study

Surface & Coatings Technology

2017

This paper presents both experimental work and numerical simulations of formation of superoleophobic surfaces created by mask-assisted electrospraying, followed by a second layer overlay and fluoropolymer treatment. The primary electric field focusing in the mask-assisted electrospray effectively guides the electrosprayed particulates into the mesh openings, forming characteristic pyramid-shaped pillars. The secondary focusing occurs during the overlay deposition when the electrosprayed particulates favorably deposit onto the pre-patterned pillars. Systematic studies were conducted on the effects of mask-substrate-gap and duration of the overlay deposition on the pattern morphology and wetting performance. A shorter mask-substrate-gap results in a stronger focusing
effect and pillars with a larger aspect ratio. The overlay deposition firstly increases the pillar height and then changes the pillar shape from pyramids to domes with overhangs due to electrostatic interactions. All the surfaces are superhydrophobic, however, superoleophobicity varies. Surfaces that have tall pillars and overhang structures demonstrate robust superoleophobicity when compared to their counterparts with shorter pillars and absence of overhang structures. The primary and secondary electric field focusing effects exerted by the mask and the pre-patterned pillars, and their roles in pattern formation have been numerically investigated by COMSOL Multiphysics simulation. A reasonable agreement has been obtained between the numerical predictions and experimental results.

Pinning and wetting stability of liquids on superoleophobic textured surfaces

Surface Innovations

2014

Super water/oil repellency has been a very active research field and could be achieved via combination of surface texturing and chemical treatment. When a droplet is deposited on a superhydrophobic/superoleophobic surface, its contact line can be pinned somewhere on the structured surface instead of fully wetting the substrate, forming a solid-liquid-air composite interface. The focus of this article is to understand the effect of pinning and wetting stability through energy analysis and force balance. Textured surfaces with straight sidewall pillar, wavy sidewall pillar and hoodoo structures are discussed in detail. For the straight sidewall structure, it was found that the top pillar edge is a stable pinning site for water. Meanwhile, hexadecane fully wets the structure without any pinning. On the wavy sidewall structure, the protruding and concave corners are pinning sites for both water and hexadecane. However, the dominant breakthrough pressure comes from the energy barrier against contact line advancing along the re-entrant slope of the wave. On the hoodoo structure, there are two pinning sites (top and bottom corner of the hoodoo cap) for water, but only one pinning site (bottom corner) for hexadecane. The effects of solid area fraction and re-entrant angles on pinning stability are studied with the wavy sidewall structure. This study suggests that Gibbs energy analysis can be a viable approach in designing robust superoleophobic surfaces by enhancing the pinning stability and breakthrough pressure, which is strongly correlated to design parameters, for example solid area fraction, geometrical re-entrant angle and dimensions. This article contains supporting information that is available online.

View more

Effect of Surface Texturing on Superoleophobicity, Contact Angle Hysteresis, and Robustness

Langmuir

2012

Previously, we reported the creation of a fluorosilane (FOTS) modified pillar array silicon surface comprising ∼3-μm-diameter pillars (6 μm pitch with ∼7 μm height) that is both superhydrophobic and superoleophobic, with water and hexadecane contact angles exceeding 150° and sliding angles at ∼10° owing to the surface fluorination and the re-entrant structure in the side wall of the pillar. In this work, the effects of surface texturing (pillar size, spacing, and height) on wettability, contact angle hysteresis, and “robustness” are investigated. We study the static, advancing, and receding contact angles, as well as the sliding angles as a function of the solid area fraction. The results reveal that pillar size and pillar spacing have very little effect on the static and advancing contact angles, as they are found to be insensitive to the solid area fraction from 0.04 to ∼0.4 as the pillar diameter varies from 1 to 5 μm and the center-to-center spacing varies from 4.5 to 12 μm. On the other hand, sliding angle, receding contact angle, and contact angle hysteresis are found to be dependent on the solid area fraction. Specifically, receding contact angle decreases and sliding angle and hysteresis increase as the solid area fraction increases. This effect can be attributable to the increase in pinning as the solid area fraction increases. Surface Evolver modeling shows that water wets and pins the pillar surface whereas hexadecane wets the pillar surface and then penetrates into the side wall of the pillar with the contact line pinning underneath the re-entrant structure. Due to the penetration of the hexadecane drop into the pillar structure, the effect on the receding contact angle and hysteresis is larger relative to that of water. This interpretation is supported by studying a series of FOTS pillar array surfaces with varying overhang thickness. With the water drop, the contact line is pinned on the pillar surface and very little overhang thickness effect was observed. On the other hand, the hexadecane drop is shown to wet the pillar surface and the side wall of the overhang. It then pins at the lower edge of the overhang structure. A plot of the thickness of the overhang as a function of the static, advancing, and receding contact angles and sliding angle of hexadecane reveals that static, advancing, and receding contact angles decrease and sliding angle increases as the thickness of the overhang increases.

View more

Show All +